
Identify each as growth or decay.

1.

3.
$$y = (\frac{4}{7})^x$$

Growth or decay? decay

Factor: $\frac{4}{7}$

Rate: 3 7

Initial Value:

2.

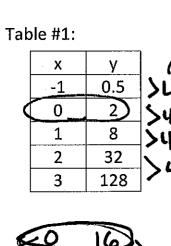
х	У
0	125
1	25
2	5
3	1
4	0.2

4.
$$y = .75 \cdot (2.4)^x$$

Growth or decay? growth

Factor: 2.4

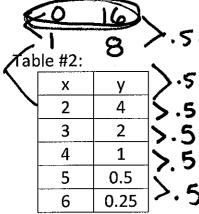
Rate: 1.4


Initial Value: .75

5. Given $y = 2(3)^x$, identify the following:

What is the initial value? 2

What is the growth/decay factor? 3


What is the growth/decay rate? 2

Growth/Decay Factor:

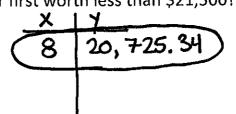
2 Growth Decay Rate: 2

- 3. Initial Value: 2
- 4. Write the equation of the exponential function:

5. Growth Decay Jactor: _____

y= 2(4)x

- 6. Growth Decay Rate: ______5
- - 8. Write the equation of the Exponential Function:


7. An initial population of 5 squirrels increases by 9% each year for 10 years. Using x for years and y for the number of squirrels, write the equation that models this situation.

How many squirrels will there be in 10 years?

8. A car purchased for \$34,000 is expected to lose value, or depreciate, at a rate of 6% per year. Using x for years and y for the value of the car, write the equation that models this situation.

After how many years is the car first worth less than \$21,500?

X	Y
1	31960
5	31,960 24,952.74
7	23, 455.57

after 8 years