$\qquad$ Date: $\qquad$ Pd: $\qquad$

## Algebra U7L2 - Transformations on the Linear Parent Function

Warm Up...
A.3C - real world linear funtions:

The graph below shows the monthly cost of a long-distance calling plan.

COST OF CALLING PLAN


What does the slope of the graph represent?
A. the cost of zero minutes of calls
B. the cost per additional minutes of long-distance calls
C. the total cost of long-distance calls
D. the number of minutes $\$ 1$ can buy

| Number of car washes, $\boldsymbol{x}$ | 0 | 8 | 12 |
| :--- | ---: | ---: | ---: |
| Amount left on card (\$), $\boldsymbol{y}$ | 30 | 18 | 12 |

A.2C - write equation from table or graph: Write an equation for the situation represented in the table at the bottom of this box

Recent Review:
Graph the system of inequalities and shade the solution set (the section that overlaps)

$$
\begin{aligned}
& y \geq \frac{2}{3} x+3 \\
& y>-\frac{4}{3} x-3
\end{aligned}
$$



## Today's Goal:

- KWBAT determine the effect of transformations on the linear parent function
- WHY? This is Algebra standard A.3E which will be tested on our STAAR End of Course Exam in May. You have already built a lot of the skills to recognize the effect of transformations, but today we will explore it more deeply and put words to what we see. By the end of class, you will be able to name specific transformations and visualize what changes they will make on a line. Let's explore!

| Linear Functi |  |
| :---: | :---: |
| $f(x)=x$ |  |
| Complete the table of values. |  |
| X | f (x) |
| -4 |  |
| -2 |  |
| 0 |  |
| 1 |  |
| 3 |  |
| 5 |  |


| Why is this called |
| :--- |
| a linear function? |
|  |



Plot the points and sketch the graph below.


This is the Linear "Parent Function"
$\mathrm{f}(\mathrm{x})=\mathrm{x}$

For this activity you will need a pencil and a colored pencil


Families of Linear Functions $f(x)=x+b$

Complete the table on each of the following and draw each in a different color on the graph to the right.

| $f(x)=x+3$ |  |
| :---: | :---: |
| $x$ | $f(x)$ |
| -5 |  |
| -2 |  |
| 0 |  |
| 3 |  |
| 7 |  |
| $x$-int $=$ |  |
| $y$-int $=$ |  |


| $f(x)=x-4$ |  |
| :---: | :---: |
| $x$ | $f(x)$ |
| -6 |  |
| -3 |  |
| 0 |  |
| 2 |  |
| 5 |  |
| $x$-int $=$ |  |
| $y$-int $=$ |  |


| $f(x)=x-7$ |  |
| :---: | :---: |
| $x$ | $f(x)$ |
| -2 |  |
| -1 |  |
| 0 |  |
| 4 |  |
| 8 |  |
| $x$-int $=$ |  |
| $y$-int $=$ |  |


| $f(x)=x+6$ |  |
| :---: | :---: |
| $x$ | $f(x)$ |
| -8 |  |
| -6 |  |
| -1 |  |
| 2 |  |
| 3 |  |
| $x$-int $=$ |  |
| $y$-int $=$ |  |


|  |  |  |  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | , |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |

How are the lines above alike?

How are they different?

Write the equation of a line in this family with a y -intercept of $\mathbf{- 2}$.

Write the equation of a line in this family with a y -intercept of +5 .

Write the equation of a line in this family with a y -intercept of -10 .

## Linear Functions

in the Form of $f(x)=a x$

Graph each of the following functions in different colors on the graph at the right.
$f(x)=-x$
$f(x)=1 / 4 x$
$f(x)=4 x$

$\square$ How are the graphs different?
How are the graphs alike?

What does the coefficient of $x$ do to the linear function $f(x)=x$ ?

How would the graph of $f(x)=5 x$ compare to the graph of $f(x)=x$ ?

How would the graph of $f(x)=-3 x$ compare to the graph of $f(x)=x$ ?

How would the graph of $f(x)=.2 x$ compare to the graph of $f(x)=x$ ?

